Classification via local multi-resolution projections
نویسندگان
چکیده
منابع مشابه
Multi-resolution Texture Classification Based on Local Image Orientation
The aim of this paper is to evaluate quantitatively the discriminative power of the image orientation in the texture classification process. In this regard, we have evaluated the performance of two texture classification schemes where the image orientation is extracted using the partial derivatives of the Gaussian function. Since the texture descriptors are dependent on the observation scale, i...
متن کامل3D Object Classification via Spherical Projections
In this paper, we introduce a new method for classifying 3D objects. Our main idea is to project a 3D object onto a spherical domain centered around its barycenter and develop neural network to classify the spherical projection. We introduce two complementary projections. The first captures depth variations of a 3D object, and the second captures contour-information viewed from different angles...
متن کاملSingle-image super-resolution via local learning
Nearest neighbor-based algorithms are popular in example-based super-resolution from a single image. The core idea behind such algorithms is that similar images are close in the sense of distance measurement. However, it is well known in the field of machine learning and statistical learning theory that the generalization of the nearest neighbor-based estimation is poor, when complex or high di...
متن کاملMulti-resolution Laws’ Masks based texture classification
Wavelet transforms are widely used for texture feature extraction. For dyadic transform, frequency splitting is coarse and the orientation selection is even poorer. Laws’ mask is a traditional technique for extraction of texture feature whose main approach is towards filtering of images with five types of masks, namely level, edge, spot, ripple, and wave. With each combination of these masks, i...
متن کاملExtended Multi-resolution Local Patterns - A Discriminative Feature Learning Approach for Colonoscopy Image Classification
We propose a novel local image descriptor called the Extended Multi-resolution Local Patterns, and a discriminative probabilistic framework for learning its parameters together with a multi-class image classifier. Our approach uses training data with image-level labels to learn the features which are discriminative for multi-class colonoscopy image classification. Experiments on a three class (...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Statistics
سال: 2012
ISSN: 1935-7524
DOI: 10.1214/12-ejs677